The human prion protein residue 129 polymorphism lies within a cluster of epitopes for T cell recognition.

نویسندگان

  • Jeremy D Isaacs
  • Rebecca J Ingram
  • John Collinge
  • Daniel M Altmann
  • Graham S Jackson
چکیده

T cell immune responses to central nervous system-derived and other self-antigens are commonly described in both healthy and autoimmune individuals. However, in the case of the human prion protein (PrP), it has been argued that immunologic tolerance is uncommonly robust. Although development of an effective vaccine for prion disease requires breaking of tolerance to PrP, the extent of immune tolerance to PrP and the identity of immunodominant regions of the protein have not previously been determined in humans. We analyzed PrP T cell epitopes both by using a predictive algorithm and by measuring functional immune responses from healthy donors. Interestingly, clusters of epitopes were focused around the area of the polymorphic residue 129, previously identified as an indicator of susceptibility to prion disease, and in the C-terminal region. Moreover, responses were seen to PrP peptide 121-134 containing methionine at position 129, whereas PrP 121-134 [129V] was not immunogenic. The residue 129 polymorphism was also associated with distinct patterns of cytokine response: PrP 128-141 [129M] inducing IL-4 and IL-6 production, which was not seen in response to PrP 128-141 [129V]. Our data suggest that the immunogenic regions of human PrP lie between residue 107 and the C-terminus and that, like with many other central nervous system antigens, healthy individuals carry responses to PrP within the T cell repertoire and yet do not experience deleterious autoimmune reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease*

A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or V...

متن کامل

Molecular Identification of Pre-Existing Immunityin Human against H9N2 Influenza Viruses Using HLA-A*0201 Binding Peptides

Background and Aims: The contribution genetic and antigenic diversity of H9N2 influenza viruses in evading from immune responses, cytotoxic T lymphocytes (CTL) epitopes in hemagglutinin (HA) protein restricted by HLA binding peptides was identified. Materials and Methods: Phylogenetic analyses were carried out for all of full length HA and deduced amino acid sequences of H9N2 viruses available ...

متن کامل

Burial of the polymorphic residue 129 in amyloid fibrils of prion stop mutants.

Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, h...

متن کامل

Polymorphism of Prion Protein Gene (PRNP) in Iranian Holstein and Two Local Cattle Populations (Golpayegani and Sistani) of Iran

Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease in cattle, characterized by the accumulation of an abnormal, proteaseresistant prion protein (PrPSc) in the brain. BSE is similar to scrapie in sheep and goats and Creuzfeldt-Jakob disease in humans. Susceptibility in cattle hasbeen shown to be under the influence of two polymorphic locations, which are...

متن کامل

Crystal structure of human prion protein bound to a therapeutic antibody.

Prion infection is characterized by the conversion of host cellular prion protein (PrP(C)) into disease-related conformers (PrP(Sc)) and can be arrested in vivo by passive immunization with anti-PrP monoclonal antibodies. Here, we show that the ability of an antibody to cure prion-infected cells correlates with its binding affinity for PrP(C) rather than PrP(Sc). We have visualized this interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 65 11  شماره 

صفحات  -

تاریخ انتشار 2006